Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.395
Filtrar
1.
Sci Rep ; 14(1): 6440, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499631

RESUMO

This study aimed at exploring the effects of γ-polyglutamic acid on the growth of desert alfalfa and the soil microorganisms in the rhizosphere. The study examined the effects of varying concentrations of γ-polyglutamic acid (0%-CK, 2%-G1, 4%-G2, 6%-G3) on sandy soil, the research investigated its impact on the growth characteristics of alfalfa, nutrient content in the rhizosphere soil, and the composition of bacterial communities. The results indicated that there were no significant differences in soil organic matter, total nitrogen, total phosphorus, total potassium, and available phosphorus content among the G1, G2, and G3 treatments. Compared to CK, the soil nutrient content in the G2 treatment increased by 14.81-186.67%, showing the highest enhancement. In terms of alfalfa growth, the G2 treatment demonstrated the best performance, significantly increasing plant height, chlorophyll content, above-ground biomass, and underground biomass by 54.91-154.84%. Compared to the CK treatment, the number of OTUs (operational taxonomic units) in the G1, G2, and G3 treatments increased by 14.54%, 8.27%, and 6.84%, respectively. The application of γ-polyglutamic acid altered the composition and structure of the bacterial community, with Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota accounting for 84.14-87.89% of the total bacterial community. The G2 treatment significantly enhanced the diversity and evenness of soil bacteria in the rhizosphere. Redundancy analysis revealed that organic matter, total nitrogen, total potassium, moisture content, and pH were the primary factors influencing the structure of bacterial phyla. At the genus level, moisture content emerged as the most influential factor on the bacterial community. Notably, moisture content exhibited a strong positive correlation with Acidobacteriota, which in turn was positively associated with indicators of alfalfa growth. In summary, the application of γ-polyglutamic acid at a 4% ratio has the potential for improving sandy soil quality, promoting plant growth, and regulating the rhizosphere microbial community.


Assuntos
Areia , Solo , Solo/química , Medicago sativa , Rizosfera , Ácido Poliglutâmico , Microbiologia do Solo , Bactérias , Acidobacteria , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Suplementos Nutricionais/análise
2.
Sci Rep ; 14(1): 6548, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503859

RESUMO

Trace metals are naturally occurring metals found in very small concentrations in the environment. In the context of fish flesh, metals such as copper, calcium, potassium, sodium, zinc, iron, and manganese are absorbed by fish and play vital roles in various physiological functions. However, if these metals exceed the recommended limits set by WHO/FAO, they are termed 'toxic metals' due to their harmful impacts on both the fish and its consumers. Therefore, the present study aims to analyze the levels of protein, lipids, and certain metals-Aluminum (Al), Sodium (Na), Zinc (Zn), Titanium (Ti), Iron (Fe), Copper (Cu), Potassium (K), and Calcium (Ca) in three commercially important marine fishes i.e. Rastrelliger kanagurta, Sardinella abella, and Otolithes ruber. The study also aims to assess their potential impact on human health. The macro-Kjeldhal method and Soxhlet apparatus were used to estimate protein and lipid contents, while atomic absorption spectroscopy (AAS) was used to estimate trace metals found in fishes. The study found that these fish species are valuable sources of protein, lipids, and certain essential minerals. The protein content (CP) in these three species ranged from 63.35 to 86.57%, while lipid content was from 21.05 to 23.86%. The overall results of the trace metal concentrations analyzed in the present study revealed that Aluminum (Al), Sodium (Na), Zinc (Zn), Titanium (Ti), Copper (Cu), Potassium (K), and Calcium (Ca) were found in low concentration or traces and also within suitable ranges as set by WHO/FAO. However, Iron (Fe) was absent in all three species. Moreover, both copper and potassium were found in all three species, while Zinc was present in Rastrelliger kanagurta and Sardinella abella, calcium in Sardinella abella, and sodium in Otolithes ruber only. Titanium was recorded for the first time in S. abella. However, the total health risk assessment associated with these fish food consumption was measured by THQ and TTHQ and found to be less than 1, which shows no potential risk related to trace metals found in these fishes on human health upon their consumption. In conclusion, these commercially important marine fish species were found valuable sources of protein, lipids, and essential trace minerals that are necessary for human health. Thus, the current study provides useful information for the local population to make informed decisions about their daily diets and highlights the importance of sustainable fishing practices to maintain these valuable marine resources by periodical monitoring of their ecosystem.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Humanos , Animais , Oligoelementos/análise , Cobre/análise , Metais Pesados/análise , Alumínio/análise , Cálcio/análise , Titânio/análise , Ecossistema , Monitoramento Ambiental , Zinco/análise , Ferro/análise , Medição de Risco , Sódio/análise , Potássio/análise , Lipídeos , Peixes/metabolismo , Poluentes Químicos da Água/análise
3.
Sci Rep ; 14(1): 2273, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280937

RESUMO

The study specifically focused on the Hongliulin mining area, where a total of 40 soil samples were meticulously collected and analyzed from within a 1000 m radius extending from the tailings dam. The findings revealed that soil pH within the 0-1000 m range generally leaned towards the alkaline side. In terms of soil nutrient content, encompassing factors such as soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali nitrogen (AK), available phosphorus (AP), and quick-acting potassium (AK), the variations fell within the following ranges: 2.23-13.58 g/kg, 0.12-0.73 g/kg, 0.18-1.15 g/kg, 9.54-35.82 g/kg, 2.89-6.76 mg/kg, 3.45-11.25 mg/kg, and 5.86-130.9 mg/kg. Collectively, these values indicate relatively low levels of soil nutrients. Within the 0-500 m range of soil samples, the average concentrations of Cd, Hg, Pb, and As were 0.778, 0.198, 24.87, and 17.92 mg/kg, respectively. These concentrations exceeded the established soil background values of Shaanxi Province and emerged as the primary pollutants in the study area. Within this same range, the mean values of eight toxic metals (Pi) were ranked in the following descending order: 1.726 (Hg), 1.400 (As), 1.129 (Cr), 1.109 (Pb), 0.623 (Zn), 0.536 (Cd), 0.309 (Cu), and 0.289 (Ni). With the exception of Hg, As, Cr, and Pb, which exhibited slight pollution, the other toxic metals were found to be within acceptable pollution limits for this sampling range, in line with the results obtained using the geo-accumulation index method. The average potential ecological risk index for the eight toxic metals in the study area stood at 185.0, indicating a moderate overall pollution level. When assessing individual elements, the proportions of ecological risk attributed to Hg, As, Pb, and Cd were 34.57%, 27.44%, 25.11%, and 23.11%, respectively. This suggests that the primary potential ecological risk elements in the study area are Hg and As, followed by Cd and Pb. Notably, toxic metals Hg and Pb, as well as As and Pb, exhibited significant positive correlations within the sampling area, suggesting a common source. An analysis of the relationship between soil physicochemical properties and toxic metals indicated that soil pH, SOM, TN, and TP were closely linked to toxic metal concentrations. The toxic metal elements in the research area's soil exhibit moderate variability (0.16 < CV < 0.36) to high variability (CV > 0.36). Within the range of 0-200 m, the CV values for Cd and Hg exceed 1, indicating a high level of variability. The coefficient of variation for SOM, TP, AP, AK and TK is relatively high with the of 2.93, 2.36, 2.36, 21.01, 7.54. The soil in the sampling area has undergone significant disturbances due to human activities, resulting in toxic metal pollution and nutrient deficiencies.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Chumbo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Medição de Risco , Mineração , Mercúrio/análise , Nitrogênio/análise , Fósforo/análise , Potássio/análise , China
4.
Sci Total Environ ; 916: 170294, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272080

RESUMO

Calcium-silicon-magnesium-potassium fertilizer (CSMP) is usually used as an amendment to counteract soil acidification caused by historical excessive nitrogen (N) applications. However, the impact of CSMP addition on phosphorus (P) mobilization in acidic soils and the related mechanisms are not fully understood. Specifically, a knowledge gap exists with regards to changes in soil extracellular enzymes that contribute to P release. Such a knowledge gap was investigated by an incubation study with four treatments: i) initial soil (Control), ii) urea (60 mg kg-1) addition (U); iii) CSMP (1%) addition (CSMP) and iv) urea (60 mg kg-1) and CSMP (1%) additions (U + CSMP). Phosphorus mobilization induced by different processes was distinguished by biologically based P extraction. The Langmuir equation, K edge X-ray absorption near-edge structure spectroscopy, and ecoenzyme vector analysis according to the extracellular enzyme activity stoichiometry were deployed to investigate soil P sorption intensity, precipitation species, and microbial-driven turnover of organophosphorus. Results showed that CaCl2 extractable P (or citric acid extractable P) content increased by 63.4% (or 39.2%) in the soil with CSMP addition, compared with the study control. The accelerated mobilization of aluminum (Al)/iron (Fe)-bound P after CSMP addition, indicated by the reduction of the sum of FePO4·2H2O and AlPO4 proportion, contributed to this increase. The decrease of P sorption capacity can also be responsible for it. The CSMP addition increased enzyme extractable P in the soil nearly 7-fold and mitigated the limitations of carbon (C) and P for soil microorganisms (indicated by the enzyme stoichiometry and ecoenzyme vector analysis), suggesting that microbial turnover processes also contribute to P mobilization in amended acidic soil. These findings indicate that the P mobilization in CSMP amended acidic soil not only attributed to both decreasing P sorption capacity and dissolving phosphate precipitation, but also to the increase of the microbial turnover of the organophosphorus pool.


Assuntos
Cálcio , Fósforo , Fósforo/análise , Cálcio/análise , Solo/química , Magnésio/análise , Silício , Fertilizantes/análise , Potássio/análise , Fosfatos/análise , Ureia
5.
Environ Pollut ; 343: 123097, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065336

RESUMO

Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 µg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Leucemia , Linfoma , Adulto , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , Leucemia/induzido quimicamente , Leucemia/epidemiologia , Linfoma/induzido quimicamente , Linfoma/epidemiologia , Potássio/análise , Poluentes Atmosféricos/análise
6.
Appl Spectrosc ; 78(2): 243-250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083817

RESUMO

This study was dedicated to developing analytical methods for determining macronutrients (Ca, K, and Mg) in soy leaf samples with and without petioles. The study's primary purpose was to present Laser-induced breakdown spectroscopy (LIBS) as a viable alternative for directly analyzing leaf samples using chemometric tools to interpret the data obtained. The instrumental condition chosen for LIBS was 70 mJ of laser pulse energy, 1.0 µs of delay time, and 100 µm of spot size, which was applied to 896 samples: 305 of soy without petioles and 591 of soy with petioles. The reference values of the analytes for the proposition of calibration models were obtained using inductively coupled plasma optical emission spectroscopy (ICP-OES) technique. Twelve normalization modes and two calibration strategies were tested to minimize signal variations and sample matrix microheterogeneity. The following were studied: multivariate calibration using partial least squares and univariate calibration using the area and height of several selected emission lines. The notable normalization mode for most models was the Euclidean norm. No analyte showed promising results for univariate calibrations. Micronutrients, P and S, were also tested, and no multivariate models presented satisfactory results. The models obtained for Ca, K, and Mg showed good results. The standard error of calibration ranged from 2.3 g/kg for Ca in soy leaves without petioles with two latent variables to 5.0 g/kg for K in soy leaves with petioles with two latent variables.


Assuntos
Lasers , Espectroscopia Fotoeletrônica/métodos , Análise Espectral/métodos , Cálcio/análise , Cálcio/química , Potássio/análise , Potássio/química , Magnésio/análise , Magnésio/química
7.
Braz J Biol ; 83: e275585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055506

RESUMO

Organic agriculture is becoming an increasingly popular direction in modern agriculture. At the same time, some researchers and practitioners still have doubts about the ability of this technology to maintain the balance of nutrients in the soil. The article is a contribution to the study of the influence of long-term organic farming on agrochemical soil parameters. The aim of the study was to study the influence of organic farming technology on the content of humus, mobile forms of potassium and mobile forms of phosphorus in the soil of the most important components for fertility - humus, mobile forms of potassium and mobile forms of phosphorus in the non-carbonate chernozems of Western Siberia. The chernozems of Western Siberia are characterized by a high content of humus and nutrients, have optimal properties for agricultural crops. A statistically processed comparison of the quantitative content of humus, mobile forms of potassium and mobile forms of phosphorus in fields with long-term use of organic farming technology, and in similar fields where this technology was not used, was carried out. The article includes a brief geographical, geological, climatic characteristics of the place of the experiment, a description of the applied agricultural technologies and fertilizers. As a result, it was found that the use of organic farming technology has a positive effect on the state of soils, which is confirmed by an increase in the content of humus, mobile forms of potassium and mobile forms of phosphorus.


Assuntos
Agricultura Orgânica , Solo , Fósforo , Potássio/análise , Agricultura , Fertilizantes , Nitrogênio/análise
8.
Nutr. clín. diet. hosp ; 43(4): 182-188, 13 dec. 2023. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-229958

RESUMO

Introducción: El aumento de la incidencia y prevalenciade la obesidad en la población infantojuvenil, el exceso deconsumo de sodio, colesterol y grasas saturadas son factoresque implican un incremento del riesgo cardiovascular en laedad adulta, y como consecuencia un problema de salud co-munitaria grave. Por ello se ha desarrollado el presente tra-bajo que incluye la segunda parte del Programa Bon Profitpara una alimentación saludable y responsable en el comedorescolar. Se ha evaluado: la calidad de los lípidos, (atendiendoa su composición en ácidos grasos, contenido en colesterol),así como el contenido en sodio (Na), Potasio(K) y Magnesio(Mg) de los menús servidos en el comedor escolar.Objetivo: Estudio y valoración de la composición en ácidosgrasos, colesterol, Na, K y Mg de los menús escolares, paraevaluar el riesgo cardiovascular, para posteriormente haceruna intervención nutricional: en diseño y elaboración de me-nús y en hábitos alimentarios, con el fin de corregir los me-nús ofertados por la empresa y prevenir el riesgo cardiovas-cular y de obesidad.Materiales y métodos: Se han valorado 28 menús queconstituyen un total de 56 platos. Cada plato se ha muestre-ado durante un periodo de tres meses, mediante método depesada directa, y valorado con el programa informáticoDIAL®, para determinar la composición lipídica: ácidos gra-sos saturados (AGS), monoinsaturados (AGM) y poliinsatura-dos (AGP), colesterol y contenido en sodio (Na), potasio(K) ymagnesio (Mg). Posteriormente se han comparado los valoresobtenidos con las recomendaciones nutricionales para la po-blación estudiada de 900 escolares entre 3 y 19 años.Conclusiones y resultados: Se puede concluir que tantoen los menús del colegio como en los del instituto, la compo-sición en AGS, AGM y AGP sobrepasa las recomendaciones (AU)


Assuntos
Dieta , Serviços de Saúde Escolar , Lipídeos/sangue , Ácidos Graxos/análise , Colesterol/análise , Magnésio/análise , Potássio/análise , Sódio/análise , Espanha/epidemiologia
9.
Sci Rep ; 13(1): 18677, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907585

RESUMO

The global demand for crop production is rapidly growing due to the continued rise in world population. Crop productivity varies generally with soil nutrient profile and climate. The optimal use of fertilizers might help to attain higher crop yield in canola. To circumvent nutrient imbalance issues in soil, two separate field trials were conducted to determine (a) the best source of nitrogen (N) between ammonium sulfate (NH4)2SO4) and ammonium nitrate (NH4NO3), (b) significance of gibberellic acid (GA3) and potassium (K), in an attempt to enhance canola yield and yield attributes. Both experiments were carried out in randomized complete block design (RCBD) with three replicates. The nitrogen source in the form of NH4)2SO4 (0, 10, 20 and 30 kg/ha) and NH4NO3 (0, 50, 75 and 100 kg/ha) was applied in the rhizosphere after 3 and 7 weeks of sowing, referred to as experiment 1 (E1). In another separate experiment (E2), the canola crop was sprayed with four level of GA3 (0, 10, 15, 30 g/ha) and K (0, 2.5, 3.5, 6 g/ha) individually or in combination by using hydraulic spryer, 30 days after sowing (DAS). The data was collected at different growth stages of canola and analyzed statistically. The E1 trail showed that N fortification in the form of NH4NO3 (100 kg/ha) and (NH4)2SO4 (30 kg/ha) had a positive effect on the plant height, number of branches, fruiting zone, seed yield per plant, seed yield per hectare of canola except oil percentage. Moreover, canola plants (E2) also displayed a significant improvement on all studied features with high doses of GA3 (30 g/ha) and K (6 g/ha) individualy and in combined form. The correlation coefficient analysis of (NH4)2SO4 and NH4NO3 was highly significant to plant height, number of branches, fruiting zone, seed yield per plant, seed yield per hectare of canola In a nutshell, compared to both source of N, NH4NO3 was more efficient and readily available source of N. GA3 being a growth elicitor and potassium as a micronutrient serve as potential source to improve yield and to manage nutrient profile of canola.


Assuntos
Brassica napus , Produção Agrícola , Solo , Fertilizantes/análise , Nitrogênio/análise , Paquistão , Potássio/análise , Solo/química , Brassica napus/crescimento & desenvolvimento
10.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005495

RESUMO

Soil fertility is vital for the growth of tea plants. The physicochemical properties of soil play a key role in the evaluation of soil fertility. Thus, realizing the rapid and accurate detection of soil physicochemical properties is of great significance for promoting the development of precision agriculture in tea plantations. In recent years, spectral data have become an important tool for the non-destructive testing of soil physicochemical properties. In this study, a support vector regression (SVR) model was constructed to model the hydrolyzed nitrogen, available potassium, and effective phosphorus in tea plantation soils of different grain sizes. Then, the successful projections algorithm (SPA) and least-angle regression (LAR) and bootstrapping soft shrinkage (BOSS) variable importance screening methods were used to optimize the variables in the soil physicochemical properties. The findings demonstrated that soil particle sizes of 0.25-0.5 mm produced the best predictions for all three physicochemical properties. After further using the dimensionality reduction approach, the LAR algorithm (R2C = 0.979, R2P = 0.976, RPD = 6.613) performed optimally in the prediction model for hydrolytic nitrogen at a soil particle size of 0.25~0.5. The models using data dimensionality reduction and those that used the BOSS method to estimate available potassium (R2C = 0.977, R2P = 0.981, RPD = 7.222) and effective phosphorus (R2C = 0.969, R2P = 0.964, RPD = 5.163) had the best accuracy. In order to offer a reference for the accurate detection of soil physicochemical properties in tea plantations, this study investigated the modeling effect of each physicochemical property under various soil particle sizes and integrated the regression model with various downscaling strategies.


Assuntos
Nitrogênio , Solo , Solo/química , Tamanho da Partícula , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Chá
11.
Molecules ; 28(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836843

RESUMO

The monitoring of potassium ion (K+) levels in human sweat can provide valuable insights into electrolyte balance and muscle fatigue non-invasively. However, existing laboratory techniques for sweat testing are complex, while wearable sensors face limitations like drift, fouling and interference from ions such as Na+. This work develops printed electrodes using ß-cyclodextrin functionalized reduced graphene oxide (ß-CD-RGO) for selective K+ quantification in sweat. The ß-CD prevents the aggregation of RGO sheets while also providing selective binding sites for K+ capture. Electrodes were fabricated by screen printing the ß-CD-RGO ink onto conductive carbon substrates. Material characterization confirmed the successful functionalization of RGO with ß-CD. Cyclic voltammetry (CV) showed enhanced electrochemical behavior for ß-CD-RGO-printed electrodes compared with bare carbon and RGO. Sensor optimization resulted in a formulation with 30% ß-CD-RGO loading. The printed electrodes were drop-casted with an ion-selective polyvinyl chloride (PVC) membrane. A linear range from 10 µM to 100 mM was obtained along with a sensitivity of 54.7 mV/decade. The sensor showed good reproducibility over 10 cycles in 10 mM KCl. Minimal interference from 100 mM Na+ and other common sweat constituents validated the sensor's selectivity. On-body trials were performed by mounting the printed electrodes on human subjects during exercise. The K+ levels measured in sweat were found to correlate well with serum analysis, demonstrating the sensor's ability for non-invasive electrolyte monitoring. Overall, the facile synthesis of stable ß-CD-RGO inks enables the scalable fabrication of wearable sensors for sweat potassium detection.


Assuntos
Técnicas Biossensoriais , Grafite , beta-Ciclodextrinas , Humanos , Suor/química , Técnicas Biossensoriais/métodos , Potássio/análise , Reprodutibilidade dos Testes , Grafite/química , Carbono/química , beta-Ciclodextrinas/química , Eletrodos , Técnicas Eletroquímicas/métodos
12.
J Environ Radioact ; 270: 107309, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837830

RESUMO

A German dataset with soil-plant transfer factors for radiocaesium including many co-variables was analysed and prepared for the application of the Random Forest (RF) algorithm using the R libraries 'party', and 'caret'. A RF predictive model for soil-plant transfer factor was created based on 10 co-variables. These are, for example, taxonomic plant family, plant part, soil type and the exchangeable potassium concentration in the soil. The RF model results were compared with the results of two (semi-)mechanistic models. Of the more than 3000 entries in the original dataset, only about 1200 could be used, as this was the largest complete dataset with the largest number of co-variables available. The obtained RF predictive model can reproduce the experimental observations better than the two (semi)-mechanistic models, which are based on many assumptions and fixed parameter values. Model performance was quantified using the metrics of Root Mean Square Error (rmse) and Mean Absolute Error (mae). The RF model was able to reproduce the variability of the data by up to 6 orders of magnitude. The categorical co-predictors, especially taxonomic plant family and plant part, have a greater influence than the numerical co-predictors, such as pH and exchangeable soil potassium concentration. This feasibility study shows that RF is a promising tool to obtain predictive models for transfer factors. However, to build a widely applicable predictive model, a dataset is needed that contains at least thousands of entries for transfer factors and for the most important co-variables and considers a large parameter space.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , Poluentes Radioativos do Solo/análise , Fator de Transferência , Algoritmo Florestas Aleatórias , Estudos de Viabilidade , Plantas , Potássio/análise
13.
PeerJ ; 11: e15417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810792

RESUMO

Background: Undoubtedly, the importance of food and food security as one of the present and future challenges is not invisible to anyone. Nowadays, the development of methods for monitoring the nutrient content in crop products is an essential issue for implementing reasonable and logical soil properties management. The modeling technique can evaluate the soil properties of fields and study the subject of crop yield through soil management. This study aims to predict fruit yield and macro-nutrient content in plant organs of Cucumis melo in response to soil elements using support vector regression (SVR). Methodology: In the spring of 2020, this study was done as a factorial test in a randomized complete block design with three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control), cow manure (30 t ha-1), sheep manure (30 t ha-1), nanobiomic foliar application (2 l ha-1), silicone foliar application (3 l ha-1), and chemical fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg ha-1). In addition, four levels of vermicompost considering as the second factor: no vermicompost (control), 5, 10, and 15 t ha-1. Input data sets such as fruit yield and nitrogen, phosphorus, and potassium levels in the seeds, fruits, leaves, and roots are used to calibrate the probabilistic model of SP using SVR. Results: According to the results, when the data sets of the nitrogen, phosphorus, and potassium in the fruit uses as input, the accuracy of these models was higher than 80.0% (R2 = 0.807 for predicting fruit nitrogen; R2 = 0.999 for fruit phosphorus; R2 = 0.968 for fruit potassium). Also, the results of the prediction models in response to soil elements showed that the soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg-1, and soil potassium from 180 to 320 mg kg-1, which offers a suitable macro-nutrient content in the soil. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, fruit potassium from 15.19 to 19.67%, and fruit yield from 2.16 to 5.95 kg per plant obtained under NPK chemical fertilizers and using 15 t ha-1 of vermicompost. Conclusions: Because the fruit values had the highest contribution in prediction than observed values, thus identified as the best plant organs in response to soil elements. Based on our findings, the importance of fruit phosphorus identifies as a determinant that strongly influenced melon prediction models. More significant values of soil elements do not affect increasing fruit yield and macro-nutrient content in plant organs, and excessive application may not be economical. Therefore, our studies provide an efficient approach with potentially high accuracy to estimate fruit yield and macro-nutrient in the fruits of Cucumis melo in response to soil elements and cause a saving in the amount of fertilizer during the growing season.


Assuntos
Cucumis melo , Solo , Animais , Ovinos , Solo/química , Fertilizantes/análise , Esterco , Nutrientes , Fósforo , Nitrogênio/análise , Potássio/análise
14.
J Cancer Res Clin Oncol ; 149(18): 16635-16645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716922

RESUMO

PURPOSE: Microscopic tumor spread beyond the macroscopically visible tumor mass in bone represents a major risk in surgical oncology, where the spatial complexity of bony resection margins cannot be countered with rapid bone analysis techniques. Laser-induced breakdown spectroscopy (LIBS) has recently been introduced as a promising option for rapid bone analysis. The present study aimed to use LIBS-based depth profiling based on electrolyte disturbance tracking to evaluate the detection of microscopic tumor spread in bone. METHODS: After en bloc resection, the tumor-infiltrated mandible section of a patient's segmental mandibulectomy specimen was natively investigated using LIBS. Spectral and electrolytic depth profiles were analyzed across 30 laser shots per laser spot position in healthy bone and at the tumor border. For the histological validation of the lasered positions, the mandibular section was marked with a thin separating disc. RESULTS: Solid calcium (Ca) from hydroxyapatite and soluble Ca from dissolved Ca can be reliably differentiated using LIBS and reflect the natural heterogeneity of healthy bone. Increased potassium (K) emission values in otherwise typically healthy bone spectra are the first spectral signs of tumorous bone invasion. LIBS-based depth profiles at the tumor border region can be used to track tumor-associated changes within the bone with shot accuracy based on the distribution of K. CONCLUSION: Depth profiling using LIBS might enable the detection of microscopic tumor spread in bone. In the future, direct electrolyte tracking using LIBS should be applied to other intraoperative challenges in surgical oncology to advance rapid bone analysis by spectroscopic-optical techniques.


Assuntos
Neoplasias Bucais , Potássio , Humanos , Potássio/análise , Projetos Piloto , Análise Espectral/métodos , Cálcio/análise , Lasers , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/cirurgia , Eletrólitos
15.
Environ Sci Pollut Res Int ; 30(50): 109181-109197, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37759059

RESUMO

Members of the Gulf Cooperation Council countries Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates rely on desalination to produce water for domestic use. Desalination produces brine that may intrude into the aquifers to pollute the fresh groundwater because of the concentration gradient and groundwater pumping. Modeling the trends of saltwater intrusion needs theoretical understanding and thorough logical experimentation. The objective of this exercise was to understand the phenomenon of saltwater intrusion using an existing set of data analyzed with the convective-diffusion equation and the two-region mobile-immobile solution model. The objective was achieved by optimizing non-measurable solute transport parameters from an existing set of data generated from a series of logical miscible displacements of potassium bromide through sepiolite minerals and curve-fitting simulations. Assumptions included that solute displacements through sepiolite porous media and the related simulations represented the phenomenon of saltwater intrusion under non-equilibrium conditions of porous media mimicking the aquifers. Miscible displacements of potassium bromide were observed from a column of 2.0-2.8 mm aggregates of sepiolite over 4 ranges of concentration and at 11 displacement speeds under saturated vertical flow deionized water and vice versa. Breakthrough curves of both bromide and potassium ions were analyzed by a curve-fitting technique to optimize transport parameters assuming solute movement was governed (i) by the convective-diffusion equation and (ii) the two-region mobile-immobile solution model. Column Peclet numbers from the two analyses were identical for potassium ions but those for bromide ions were c. 60% greater from the two-region model than from the convective-diffusion equation. For the two-region model, dispersion coefficients were well defined and remained unchanged from the convective-diffusion equation for potassium ions but decreased for bromide ions. Retardation factors for bromide ions were approximately the same, but those for potassium ions, though > 1, were poorly defined. In order to design mitigation strategies for avoiding groundwater contamination, this study's findings may help model groundwater pollution caused by the activities of desalination of seawater, which produces concentrated liquid that intrudes into the coastal aquifer through miscible displacement. However, robust saltwater intrusion models may be considered in future studies to confirm the results of the approach presented in this exercise. Field data on the groundwater contamination levels may be collected to compare with simulated trends drawn from the saltwater intrusion models and the curve-fitting technique used in this work. A comparison of the output from the two types of models may help determine the right option to understand the phenomena of saltwater intrusion into coastal aquifers of various characteristics.


Assuntos
Brometos , Água Subterrânea , Brometos/análise , Água Subterrânea/análise , Água/análise , Água do Mar/análise , Íons/análise , Potássio/análise , Monitoramento Ambiental
16.
PLoS One ; 18(9): e0292221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37773965

RESUMO

A field experiment was conducted at the Research Farm of the ICAR-Indian Institute of Soil Science, Bhopal (India) to study influence of different integrated nutrient management (INM) modules on soil potassium (K) fractions. The experiment comprised with twelve treatments laid out in randomized block design (RBD) with three replications under maize-chickpea cropping sequence. The treatments included general recommended dose (GRD), soil test crop response (STCR) dose; combinations of inorganic and organic inputs and only organic modules. The soil samples were collected at crop harvest and analyzed for various K fractions viz., water soluble-K, available-K, exchangeable-K, HNO3-K, lattice-K and total-K. The results indicated that potassium fractions were significantly (p = 0.05) affected by different treatments. Different INM modules significantly enhanced significantly K availability in soil. Among various INM modules studied, treatment 11 (application of 20 t ha-1 FYM in maize with 5 t ha-1 FYM every year in chickpea) proved most beneficial for improving the soil K fractions. Findings of this type are important for K fertilizer management during crop production in areas with low soil fertility.


Assuntos
Cicer , Solo , Agricultura/métodos , Zea mays , Potássio/análise , Produtos Agrícolas , Fertilizantes/análise
17.
PeerJ ; 11: e15496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456903

RESUMO

Background: The social acceptability of wild freshwater macrophytes as locally consumed vegetables is widespread. Freshwater macrophytes have several uses; for example, they can be used as food for humans. This study determined the proximate composition and mineral content of three freshwater macrophyte species, i.e., Eichhornia crassipes, Limnocharis flava, and Neptunia oleracea. Methods: Young shoots of E. crassipes, L. flava, and N. oleracea were collected from shallow channels of Puchong (3°00'11.89″N, 101°42'43.12″E), Ladang 10, Universiti Putra Malaysia (2°58'44.41″N, 101°42'44.45″E), and Kampung Alur Selibong, Langgar (06°5'50.9″N, 100°26'49.8″E), Kedah, Peninsular Malaysia. The nutritional values of these macrophytes were analysed by using a standard protocol from the Association of Official Analytical Chemists. Eight replicates of E. crassipes and L. flava and four replicates of N. oleracea were used for the subsequent analyses. Results: In the proximate analysis, N. oleracea possessed the highest percentage of crude protein (29.61%) and energy content (4,269.65 cal g-1), whereas L. flava had the highest percentage of crude fat (5.75%) and ash (18.31%). The proximate composition trend for each species was different; specifically, all of the species possessed more carbohydrates and fewer crude lipids. All of the species demonstrated a similar mineral trend, with high nitrogen and potassium and lower copper contents. Nitrogen and potassium levels ranged from 12,380-40,380 mg kg-1 and from 11,212-33,276 mg kg-1, respectively, and copper levels ranged from 16-27 mg kg-1. The results showed that all three plant species, i.e., E. crassipes, N. oleracea, and L. flava are plant-based sources of macro- and micronutrient beneficial supplements for human consumption.


Assuntos
Cobre , Minerais , Humanos , Cobre/análise , Minerais/análise , Verduras , Potássio/análise , Água Doce/análise , Valor Nutritivo , Nitrogênio/análise
18.
PLoS One ; 18(7): e0288756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467227

RESUMO

OBJECTIVE: Hypokalemia is associated with increased risk of arrhythmias and it is recommended to monitor plasma potassium (p-K) regularly in at-risk patients with cardiovascular diseases. It is poorly understood if administration of potassium supplements and mineralocorticoid receptor antagonists (MRA) aimed at increasing p-K also increases intracellular potassium. METHODS: Adults aged≥18 years with an implantable cardioverter defibrillator (ICD) were randomized (1:1) to a control group or to an intervention that included guidance on potassium rich diets, potassium supplements, and MRA to increase p-K to target levels of 4.5-5.0 mmol/l for six months. Total-body-potassium (TBK) was measured by a Whole-Body-Counter along with p-K at baseline, after six weeks, and after six months. RESULTS: Fourteen patients (mean age: 59 years (standard deviation 14), 79% men) were included. Mean p-K was 3.8 mmol/l (0.2), and mean TBK was 1.50 g/kg (0.20) at baseline. After six-weeks, p-K had increased by 0.47 mmol/l (95%CI:0.14;0.81), p = 0.008 in the intervention group compared to controls, whereas no significant difference was found in TBK (44 mg/kg (-20;108), p = 0.17). After six-months, no significant difference was found in p-K as compared to baseline (0.16 mmol/l (-0.18;0.51), p = 0.36), but a significant increase in TBK of 82 mg/kg (16;148), p = 0.017 was found in the intervention group compared to controls. CONCLUSIONS: Increased potassium intake and MRAs increased TBK gradually and a significant increase was seen after six months. The differentially regulated p-K and TBK challenges current knowledge on potassium homeostasis and the time required before the full potential of p-K increasing treatment can be anticipated. TRIAL REGISTRATION: www.clinicaltrials.gov (NCT03833089).


Assuntos
Doenças Cardiovasculares , Hipopotassemia , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Potássio/análise , Arritmias Cardíacas , Contagem Corporal Total
19.
J Plant Physiol ; 287: 154033, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352725

RESUMO

There are many different planting methods for crops, however it is very important to improve the distribution ratio of elements in different organs of crops. Therefore, to understand the effect of different planting patterns on crop element balance, we selected Cyperus esculentus continuous cropping (CC) and C. esculentus - wheat rotation cropping (RC). The leaves, tubers, roots, and soil samples were taken at the mowing time (August 1st, on the 81st day after seed sowing; August 24th, on the 105th day after seed sowing; September 16th, on the 128th day after seed sowing). Results showed that CC and RC had significant effects on soil SO42- and Cl-. With the mowing time, the relative abundance of TN (total nitrogen) in tubers showed an increasing trend, the relative richness of TN in roots decreased, and the relative content of TN in leaves showed no change in the trend under the two planting modes. CC significantly increased the TN/TP (total phosphorus) of leaves, roots, and tubers. However, RC significantly increased the AN (available nitrogen)/AP (available phosphorus) of soil. The random forest analysis (RF) showed that abiotic factors contributed the most to TN/TK (total potassium) of roots, followed by TN/TK of tubers and TP/TK of roots. We found that abiotic factors had no significant impact on TP/TK of leaves and TN/TP of tubers. As expected, different planting patterns alter the plant's N (nitrogen)/P (phosphorus)/K (potassium), which in turn may modify N and P conservation strategies.


Assuntos
Cyperus , Solo , Nitrogênio , Fósforo , Potássio/análise , China
20.
Environ Sci Pollut Res Int ; 30(29): 73881-73889, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195612

RESUMO

Air pollution may increase the risk of hypertension (HTN) by increasing oxidative stress and inflammation, and reducing sodium excretion. Potassium intake may reduce the risk of HTN through sodium excretion and reduce inflammation and oxidative stress. This study is aimed at investigating the association between air pollutants and HTN and whether these associations differ based on the potassium intake data of Korean adults from the 2012-2016 Korean National Health and Nutrition Examination Survey (KNHANES). This cross-sectional study used data from KNHANES (2012-2016) combined with annual air pollutant data from the Ministry of Environment using administrative units. We included 15,373 adults who responded to the semi-food frequency questionnaire. Associations between ambient PM10, SO2, NO2, CO, and O3 with HTN according to potassium intake were assessed using the survey logistic regression model for complex samples analysis. After adjusting for potential covariates such as, age, sex, education level, smoking status, family income, alcohol consumption, body mass index (BMI), exercise status, and survey year, as the air pollutant score considering the five air pollutants increased (severe air pollution), the prevalence of HTN increased in a dose-dependent manner (p for trend < 0.001). Meanwhile, in the adults with higher potassium intake and who were exposed to lowest levels of air pollutants score (score = 0), the ORs of HTN were significantly lower (OR = 0.56, 95% CI: 0.32-0.97). In conclusion, our study suggests that exposure to air pollutants may increase the prevalence of HTN among Korean adults. However, high potassium intake may help prevent HTN caused by air pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hipertensão , Adulto , Humanos , Poluentes Atmosféricos/análise , Estudos Transversais , Inquéritos Nutricionais , Hipertensão/epidemiologia , Poluição do Ar/análise , Sódio/análise , Inflamação , República da Coreia/epidemiologia , Potássio/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...